

Środowe seminarium w Instytucie Fizyki April $21^{st} - 12:00$

Prof. Tamás Csörgő

Wigner Research Centre for Physics, Budapest & MATE Institute of Technology, Károly Róbert Campus, Gyöngyös, Hungary & CERN

"Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies"

We study the scaling properties of the differential cross section of elastic proton-proton (pp) and proton-antiproton $(p\bar{p})$ collisions at high energies. We introduce a new scaling function, that scales – within the experimental errors – all the ISR data on elastic pp scattering from $\sqrt{s} = 23.5 - 62.5$ GeV to the same universal curve. We explore the scaling properties of the differential cross-sections of the elastic pp and $p\bar{p}$ collisions in a limited TeV energy range. Rescaling the TOTEM pp data from $\sqrt{s} = 7$ TeV to 2.76 and 1.96 TeV, and comparing it to $D0 \ p\bar{p}$ data at 1.96 TeV, our results provide an evidence for a t-channel Odderon exchange at TeV energies, with a significance of at least 6.26σ . We complete this work with a model-dependent evaluation of the domain of validity of the new scaling and its violations. We find that the H(x) scaling is valid, model dependently, within 200 GeV $\leq \sqrt{s} \leq 8$ TeV, with a -t range gradually narrowing with decreasing colliding energies.