UNIWERSYTET SZCZECINSKI
INSTYTUT FIZYKI

Środowe seminarium w Instytucie Fizyki

 November $18^{\text {th }}-12: 00$prof. Attila Krasznahorkay

Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki) \& CERN

"New results supporting the existence of the X17 particle"

Recently, a peak-like enhancement relative to the internal pair creation was observed at 140° in the angular correlation of the $e^{+} e^{-}$pairs created in the 18.15 MeV ground state transition of ${ }^{8} \mathrm{Be}[1]$. It turned out that this could be a first hint for a new $\mathrm{m}_{X} \mathrm{c}^{2}=17 \mathrm{MeV}$ boson, called X17 in the literature.

The data are explained by Feng et al. [2] with a $16.7 \mathrm{MeV}, \mathrm{J}^{\pi}=1^{-}$vector gauge boson, which may mediate the fifth force with some coupling to SM particles. Ellwanger and Moretti made another possible explanation of the experimental results through a light pseudo scalar, $\mathrm{J}^{\pi}=0^{-}$particle [3], while Kozaczuk et al., [4] explained it as an axial vector, $\mathrm{J}^{\pi}=1^{+}$boson. There are also many more possible explanations in the literature.

Using a significantly modified and improved detector setup, we reinvestigated the anomaly observed in the $e^{+} e^{-}$angular correlation by using a new Tandetron accelerator of our institute and the previous data were reproduced within the error bars.

To confirm the existence of the X17 boson, we studied also the ${ }^{3} \mathrm{H}(\mathrm{p}, \gamma){ }^{4} \mathrm{He}$ reaction. The Q value of the reaction is very large $(\mathrm{Q}=20.6 \mathrm{MeV})$ and the resonant proton capture populates the wide 0^{+}first excited state and the 0^{-} second excited state. We observed $e^{+} e^{-}$pairs with a smooth angular correlation,
but on top of that a peak at $\Theta \approx 115^{\circ}$ is clearly visible with larger than 7σ confidence, which can be described by assuming the creation and decay of the same X17 boson [5].
[1] A.J. Krasznahorkay et al., Phys. Rev. Lett. 116, 042501 (2016)
[2] J. Feng et al., Phys. Rev. Lett. 117, 071803 (2016)
[3] Ulrich Ellwanger and Stefano Moretti, JHEP 11, 039 (2016)
[4] Jonathan Kozaczuk, David E. Morrissey, and S. R. Stroberg, Phys. Rev. D 95, 115024 (2017)
[5] D.S. Firak et al., EPJ Web of Conferences 232, 04005 (2020); and references therein.

